产业新闻

用电容式触摸感应和红外线接近感应开发新一代HMI人机界面

2015-04-27 09:14:21 huangjun 44

       预计2010年具有先进人机界面的电子产品出货量将超过十亿。这些人机界面利用电容和红外线接近感应等技术使终端用户体验显著改善,同时增加了 系统可靠性、降低了总体成本。除了使产品更易使用、更具视觉吸引力之外,这些人机界面屏蔽掉了电子产品日益增长的复杂性,使得制造商能够把具有先进功能的 产品更快推向市场。
  

       先进传感器人机界面比传统的机械式界面更可靠,因为它们没有与按键和转盘相连的活动部件,这些部件随着时间的推移更易失效。基于传感器的控制面 板和显示器也变得更加灵活,允许单套控制组件根据应用程序环境重新配置,以便客户在现有功能的基础上实现自己的应用。手势识别和“非接触”技术相结合后, 开发人员可以使设备界面变得更加智能,预测用户所需、创新使用模式,从而使产品更加友好、直观易用。固件可以根据市场需求快速方便的灵活调整,从而无需完 全重新构建系统或重新设计设备外观。

新一代人机界面

   

      新产品呼唤新人机界面的产生,从而使自己在市场中脱颖而出。通过使电子设备更了解其运行环境,新功能增强了易用性、提高功效和降低系统成本。此外,其高灵敏度、低噪音,耐潮湿的特性,即使在最具挑战性的环境中也能确保其可靠性。
   

     驱动新一代人机界面开发的两种主流技术是电容和接近感应。电容感应器通过感应器件的电容值变化判断使用者的手指的存在。它可实现高级控件,如滑 动条和滚轮,并且能更好的识别用户过去常采用的物理反馈式近距离界面操作,如按下按钮。接近感应使用红外线传感器(利用红外线反射技术)测量与物体间的距 离,最远可达1米。接近传感器也可以辨认空中物体,进行“非接触式”手势跟踪。
   

     以上两种技术相结合能够对用户界面进行更好的调控。许多最终用户已经从一些消费类产品使用中熟悉了电容感应技术,最有代表性的是iPod和iPhone。到目前为止,接近感应通常被用来进行简单的任务,如手机上的面颊检测。然而,其应用领域远非局限于此:
   

    用户检测:例如,接近感应可以检测到最终用户当前是否在电脑前,并能够在用户离开时关闭显示器。考虑到LCD背光非常耗电,因此即使是简单的用户检测也能 为整个企业节省大量能耗。用户检测也可以用于USB充电器/驱动器等设备,以便设备可以做好被突然拔出的准备。
   

     无指纹显示:许多便携式设备需要用户触摸屏幕上的按钮,遗留的印迹即不利于识别,也很难清除。具有非接触式界面的便携式多媒体播放器使用户在观看视频时无 需触摸屏幕。类似的应用包括:使用户无需触摸屏幕即可轻松实现电子书翻页;允许医生在手术中直接与触摸屏系统交互,而无需触摸电子屏幕。
  

     自动背光控制:接近感应信号通道一部分利用环境光传感器(ALS)消除外部光源带来的噪声。同样的传感器也能够用于监视背景照明条件,自动调整显示器背光以减少能量消耗。
 

     隐形入侵检测:可反射射向系统内门表面的红外光,开发人员可以实施“隐形”入侵检测机制,避免具有相同功能的机械开关的不可靠性和损耗。
   

     健康和安全考虑:多媒体信息站(kiosk)、检验台和其他公共计算机存在通过键盘和屏幕传播疾病的风险。例如,在中国的一些地区,法律规定电梯控制面板 每小时消毒一次,以防止SARS的蔓延。非接触式面板避免和减轻了这些公共健康所带来的问题。

 

     移除界面控制

  

      嵌入式设计中的一个趋势是从主应用处理器中去除用户界面管理,将其分配给专用的8位微控制器(MCU)。对于应用处理器来说,触摸是一个相对较慢的动作,使用整个系统去检测用户是否移动手指比使用专用8位MCU实现相同功能所消耗的能量要多得多。
   

     电容式触摸感应MCU,如Silicon Labs的F99x系列产品非常适合用于管理新一代用户界面。通过为任务提供高达25 MHz的运行性能以及最优化的外设,F99x MCU提供智能和精确感应所需的处理和输入能力。与Si11xx接近感应系列产品相结合,开发者可在单一开发环境中实现高效人机界面。
F99x MCU的电容感应性能通过硬件实现的电容数字转换器(CDC)得到进一步增强。Silicon Labs的CDC包含两路电流输入(数字模拟转换器或DAC)。第一路为可变DAC,用于测量到外部感应电容的电流;第二路是恒定电流源,用于内部参考电 容(见图1)。电容测量使用逐次逼近方式(SAR),该高效处理过程消除了直流(DC)偏移带来的影响,且无需外部组件。


 
       图1:硬件实现的CDC提供高性能、16位精度、高可靠性和DC偏移抑制—无需外部组件
   

        F99x MCU的16位CDC具有高可靠性和准确性。通过执行两阶段外部电容放电,CDC能够消除放电过程中传入的环境噪声。相比之下,其他方法需要额外的外部元件(例如串联电阻等)和一个以上I/O/每通道(因而增加了MCU尺寸和布线难度)。
   

       CDC的动态范围通过使用可调增益得到进一步提升。同时,动态范围也通过以下方式得到增强:减少源电流以改变充电时间;当源电流和串联阻抗都很 高时(例如当使用触摸面板或ESD保护电容按盘时)更直接反映电容传感器电压。更高灵敏度为开发人员提供更大的信号冗余度,允许他们使用较厚的塑料、更小 的电极,即使在嘈杂环境中仍能确保操作可靠性。 CDC也可使用引脚监视功能动态调整转换时间,消除附近引脚上高电流开关转换所带来的干扰。总之,CDC具有极好的信噪比(SNR),在典型的电容感应实 现中SNR为50-100。

无与伦比的系统响应性

   

       接近传感采用了红外线感应器和一个或更多的红外发光二极管(LED)。其基本工作原理是通过照亮物体,然后测量反射光的强度。所需LED的数量 取决于应用以及是否需要三维信息。例如,纸巾分配传感器,只需要一个LED来检测是否有人站在分配器前。为了检测左/右或上/下的手势,需要两个LED。 为了支持三维导航,需要三个LED。在每一种情况下,只需一个物理传感器。然而,每个附加的传感器增加了识别来自每个LED信号强度的所需处理,并且可利 用三角定位方法判断被检测对象的位置。
   

      处理也需要过滤接收信号中的噪声(即背景光)。处理器或嵌入式控制器越强大,所能获得的采样值就越多,过滤效果也就越好。增加采样率提高了系统的分辨率,同时更好的过滤也提高了准确性。快速采样和高精度过滤需要一个稳健的接口,开发人员必须权衡每一种方法来优化其应用。
通常情况下,与低灵敏度光电二极管相关的是扩展采集时间,允许光源(例如荧光灯)闪烁降低精度。Silicon Labs高灵敏度的光电二极管技术 — 10余年来已在行业得到验证 — 具有良好的抗电磁干扰(EMI)和抗闪烁特性,且能可靠检测高达50厘米远的物体,而无需使用外部镜头或过滤器。基于稳健的光电二极管技术,Si11xx 传感器系列产品可以选择集成环境光传感器。
   

     接近感应子系统的功耗主要是红外线发光二极管(LED)。Silicon Labs的QuickSense™开发环境可协助开发者定义配置参数,优化精度、检测范围和功耗。例如,高级控制能力允许开发人员为特定应用和检测范围动 态调整LED电流。对于超低功耗操作,开发者能够使用创新的单脉冲接近感应最小化LED打开时间,可以使功耗效率最大提高4000倍.